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Note 

Heat Conservation in Deforming Element 
Phase Change Simulation 

INTRODUCTION 

In a series of previous papers [S-lo, 61, a technique for finite element phase 
change simulation has been developed and tested. The essential feature of this 
technique is the use of the Galerkin method on deforming elements, with the 
element motion tied to the phase boundary and interpolated at interior nodes. In 
this paper, we demonstrate that this method conserves heat exactly, provided the 
calculation of the heat flux at the phase boundary is reformulated. 

The new boundary condition requires no restructuring of the basic algorithm and 
adds no computational overhead. Further, it eliminates a small but persistent error, 
which we have observed and reported in the earlier papers: a consistent overpredic- 
tion of the phase boundary penetration (roughly l-3 %) for freezing problems. The 
present heat balance analysis reveals that this has been a first-order error in the 
mesh spacing normal to the phase boundary, which explains its persistence even 
when the temperature solution was well resolved. 

Computational results confirm that the new boundary condition yields second- 
order accuracy overall and errors which are an order of magnitude smaller than 
those previously reported. 

PROBLEM STATEMENT AND METHOD 

Consider a domain D occupied by two phases, separated by an interface S as in 
Fig. 1. By convention, the normal vector on S is directed from D, into D,. The 
Stefan problem consists of the heat equation on D, and D, separately. In Galerkin 
form, we have 

+ (Kvfy V#i)=Fi, 

where ( ) is the inner product notation representing the sum of integrations over 
each phase, 4i are the finite element bases, and ? is the approximate numerical 
solution. The quantity Fi arises from the integration of the divergence term by parts 
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FIG. 1. Two-phase domain with interface S. 

and has two components corresponding to the flux integrals over r and S, respec- 
tively, 

The usual boundary conditions apply on r, and two interface conditions are 
required on S, 

T= To, (3) 

LV.n= {(KVT),--(KVT),}+n, (4) 

where V is the motion of S and To is the phase change temperature. 
In all of the previous papers in this series, the phase boundary has been treated 

as a type I (Dirichlet) boundary: Equation (3) was satisfied exactly, and the 
associated Galerkin equations eliminated, following conventional practice for the 
heat equation. The practical effect has been that all inner products in (1) are 
evaluated over a single phase only, and the quantities Ff never appear in the for- 
mulation. Satisfaction of the moving boundary condition (4) thus required differen- 
tiation of p, a feature also elaborated by others [l-3]. The multidimensional 
technique suggested by Lynch [6] is 

where Vi is the velocity of node i, and pf differs from Ff insofar as the actual com- 
puted temperature gradient appears. The obvious connection between these boun- 
dary fluxes suggests the alternative 

LV; s, hq+ds=Ff, (6) 
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which, when substituted into the Galerkin equation (1 ), yields 

+(Kv~,V),)=Ff+LV,.sg‘agid~. (7) 

The previously discarded Galerkin equation on S is seen, in the form (7), to be “the 
equation for V * n.” 

In the same spirit we may substitute the boundary condition (4) directly into Ff 
in (1 ), which yields the alternative 

+(Kv~,Vg,)=Ff+~~LV.8),dS=F:+LCV,.J‘i;P~,),dS. (8) 
I 

In one dimension, (7) and (8) are the same. In higher dimensions, the expression 
for Ff in (7) is effectively a lumped representation of that in (8). Below it is shown 
that calculation of the phase boundary motion according to either (7) or (8) leads 
to a perfect heat balance; while the conventional practice produces a numerical heat 
imbalance which is first order in the mesh spacing normal to S. 

CONSERVATION RELATIONS 

The statement of thermal energy conservation for the system of Fig 1 may be 
obtained by integrating the heat equation over both phases, and applying the 
divergence theorem 

(c~)=frKVT.nds+js {(KVT),-(KVT),}.nds (9) 

or, in light of the boundary condition (2), 

(c$)=fr Is KVT.nds+ LV.nds. (10) 

On the assumption that c = c(T, x), we introduce H( T, x) = & ~(0, x) de. (Note 
that H= 0 on S; latent heat is excluded from H by convention here.) With all 
system boundaries in motion with velocity V, the left side of (10) becomes 

(cC$=($)=& <H)-$=HV*n* 

and therefore 

$ (H)=$ (HV+KVT)*nds+f LV*nds. 
I- s 

(11) 

(12) 
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If Yz is the volume occupied by phase 2, 

-$ {(H)+L~}=S:(HV+~T).~~~+~ LV-nds 
ri 

where {(H) + LV2} is the heat content of the system. 
The numerical heat balance is derived by summing the Galerkin equations 

actually solved. The inner products ( ) are typically approximated by numerical 
quadrature, which we indicate by [ 1. Assuming that none of the Galerkin 
equations are discarded, we have C 4i = 1 and C Vq5j = 0 everywhere. Thus, sum- 
mation of either (7) or (8), with [ ] substituted for ( ), produces the same result, 

where the integral over r, representing the conduction flux, is the sum of the FF. If 
the quadrature is sufficient to exactly integrate (c a~‘&), then all of the steps 
leading to (13) from (10) can be retraced. More generally, we introduce the 
quadrature error rFq, 

(15) 

and (14) leads to a result exactly analogous to (13) 

f {(Z?)+L-t’;}=~~l?~~fids+~ KVT.nds+j LP*fids+&q. (16) 
I- p2 

Thus, provided the quadrature is sufficient to make r?Fq vanish, the formulations 
(7) and (8) exactly conserve heat. The key ingredient in these formulations is the 
use of the Galerkin equations along the phase boundary for the heat flux Ff. Con- 
ventional flux calculations based on VP only provide an approximate value @, the 
impact of which is quantified below. 

CARTESIAN ANALYSIS AND TESTS 

Consider a one-phase, one-dimensional Stefan problem on N equal-length linear 
elements, with node #0 fixed at the origin and node #N tracking the phase boun- 
dary, X, = S(t). Constant coefficients are assumed. The conventional calculation of 
the phase front velocity, indicated by the superscript c, is 
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while the Galerkin formulation (7) or (8) yields 

Direct calculation of the last term in (18) yields exactly pN in this special case, and 
thus 

(19) 

Evidently the Galerkin calculation contains a correction in the form of a heat 
storage term. For simple freezing problems this correction is negative and thus V; 
errs on the high side. This is precisely the consistent trend observed previously 
(Lynch and G’Neill, 1981). Note that due to the integral form of the correction, it 
will be linear in Ax. 

To analyze the accumulated error in S(t), Eqs. (17) and ( 19) may be further sim- 
plified and integrated exactly for typical Neumann problems. A characteristic of 
these simple simulations is that nodal temperatures stabilize very quickly and a self- 
similar numerical solution is produced: I?(x, t) + p(x), where x = x/S(t). Further, 
p(x) is quite insensitive to the treatment of the phase boundary condition, the 
primary numerical distinction being in the location of S(t). Thus, K?/lax 1 N N 
(c@/& IN)/S(f), and (17) may be integrated to yield 

(20) 

For the Galerkin treatment (19), we have dTi/dt N 0 and thus iT~/lat N - V ap//ax, 

LVZ= -c g (V,-,+2V,) $+KE . 
N N 

For this simple grid Ax = S/N and Vi = (i/N)(dS/dt), and (21) becomes 

LdSIKaT 
dt i%i,[l-i%+&):] 

(21) 

(22) 

which, with the above assumption concerning aTfax, may be integrated to give 

An estimate for df’/dx 1 N is its analytic value’ 212L/c, and (23) becomes 

(23) 

(24) 

’ Analytically, S = ,I,/=. 
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Thus an estimate for the relative overprediction of S by s’ is A2/2N. For small 
Stefan numbers, A2 N S,/2, where S, = c AT/L, and a simpler error estimate is S,/4N, 

To conlirm this analysis numerically, a mesh of N linear elements was initialized 
with thermal properties as in [lo], and the solution was advanced by A4 time steps 
such that the frozen thickness would grow by a factor of 10. The error in S relative 
to the analytic value is reported at the end of the simulation: E = s/T/s - 1. In Fig. 2 
we show the results obtained with the conventional flux calculation versus N at 
three levels of refinement in the time domain. The temporal discretization error is 
effectively suppressed relative to the spatial error at A4 = 64, and it is evident that 
the error decreases only linearly with N, as predicted above. In Fig. 3 we isolate the 
temporal discretization error by subtracting the spatial part, i.e., the error obtained 
with M= 64 and the same value of N. Evidently the temporal discretization error is 
second order, as expected, and is quite small relative to the spatial error. 

Experiments with the Galerkin flux calculation also show a small second-order 
temporal error. Significantly, however, the spatial error is second-order as 
illustrated in Fig. 4 for M = 64. In the range of parameters reported, the overall 
error was reduced by about an order of magnitude relative to the conventional 

FIG. 2. Total relative error E using the conventional flux calculation versus number of elements N 
for l-D, l-phase Cartesian tests. 
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FIG. 4. Isolated spatial error using Galerkin flux calculation versus number of elements N for l-D, 
l-phase Cartesian tests. 
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TABLE I 

One-phase Neumann Problem” 

N iP F 12/2N 

44 0.119 x 10-s 1.72x lo-’ 1.79 x lo-) 
22 0.115 x 10m3 3.31 x lo-3 3.58x lo-3 
11 0.0992 x 10 - 3 6.46 x 10-j 7.17x 10-3 

5 -0.0157x 10m3 13.8 xIO-~ 15.8 x~O-~ 
2 -0.517 x lo-’ 32.3 x~O-~ 39.4 x lo-’ 

a Computed error, E= S/S- 1, versus number of elements (N) for 
conventional (c) and Galerkin (G) flux calculations; A2/2N is the 
error estimate; the temporal resolution is high, M = 64. 

results. Thus in Fig. 4 we have isolated the spatial error by subtracting the tem- 
poral error-i.e., the error obtained with N = 44 and the same value of M. 

In Table I we list the total computed error versus N for the conventional and 
Galerkin flux calculations. The estimate 1*/2N is evidently quite good for 
reasonable values of N. 

In the two-phase version of this problem the same trends emerge: consistent over- 
prediction of S by the conventional flux calculation, with first-order error in the 
mesh spacing and second-order in the time step; and smaller errors which are 
second-order in N and M when the Galerkin procedure is used. As in the one-phase 
case, the Galerkin expression for the heat flux differs from the conventional by the 
term (c(E?/lat), dN), but now the inner product extends over both phases. The 
conventional error is thus larger, and proportional to the element size on both sides 
of S. Some typical results are displayed in Table II. The Galerkin errors are 
generally an order of magnitude smaller than the conventional errors. 

TABLE II 

Two-phase Neumann Problem“ 

44 0.0840 x 10 - 3 2.74 x 10 - 3 
22 0.0740 x 10 - 3 5.40x 1o-3 
11 0.0325 x lo-’ 10.8 x10-) 
5 -0.184 x 10m3 23.8 ~10~~ 
2 -1.63 x 10m3 59.0 x lo-3 

a Computed error, E = S/S- 1, versus number of 
frozen elements (N) for conventional (c) and Galerkin 
(G), flux calculations. There are 3N liquid elements. 
The thermal parameters for the frozen (liquid) domains 
are c = 0.62(0.70) cal/“C/cm’; K=0.0096(.0069) 
cal,/cm/sec/“C; L = 17.68 cal/cm3; AT= 10.0(4.O)“C; 
i = 0.35055. The temporal resolution M = 64. 
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POLAR ANALYSIS AND TESTS 

In cylindrical coordinates we have the 1-D heat equation 

(25) 

and an analytic solution for a line heat sink Q at the origin [S]. For a one-phase 
problem with N linear elements, the Galerkin equation for the heat flux at S is 

(26) 

where i? is the average value of R in the boundary element. The conventional dif- 
ferentiation of ? gives 

L(SV,)'=SK$ . (27) 
N 

As in the Cartesian case, the Galerkin equation contains an extra heat storage term. 
Additionally, however, Eq. (26) differs from (27) by the geometric factor R/S= 
(1 - (1/2N)) in the conduction term. For freezing problems, both features contribute 
to the overprediction of VN by the conventional approach and both effects are 
linear in the mesh spacing. 

To quantify the error accumulation in S(t), we proceed as in the Cartesian case, 
assuming a numerical solution p= p((p), where p = R/S(t). Evaluation of (26) 
yields, ignoring the terms in 1/N2, 

L(SY,)"=K$ 
I [ N 

l-&&V, ) 1 (28) 

which may be easily integrated as 

(f)G=~$~N[(l-$(l+&$/,)-‘]‘. (29) 

The conventional version (27) may also be easily integrated, 

(;)‘2$1,1. 

With the analytic estimate dF’dp IN N 2A2L/c, we find 

(30) 

(31) 

The first term, n2/2N, is the same as in the Cartesian case, and stems from the heat 
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storage term in (26). When the latent heat term dominates the heat balance, 
A* N $(Qc/2nKL) and by analogy with the Neumann case we identify Qc/2nKL as 
the Stefan number for this problem. The second term in (31), 1/4N, is due to the 
geometric effect in the conduction term. In many practical situations, A* e 1 and this 
effect will be dominant-in which case the heat imbalance is independent of thermal 
properties. 

We performed numerical experiments similar to those in the Cartesian case, with 
a mesh of N linear elements initialized as in [6]. The temporal discretization error 
was second order for both conventional and Galerkin phase flux calculations, as 
expected. Figure 5 shows the isolated spatial error versus N using conventional flux 
calculations at the phase boundary. The error is linear in N, as predicted, and of the 
same magnitude as its Cartesian counterpart for the same Stefan number. The 
Galerkin flux calculation consistently reduced the total computed error a hundred- 
fold relative to the conventional method, and is second order in N as shown in 
Fig. 6. Figure 7 shows the asymptotic error as a function of S for various values of 
N and compares it to that predicted by (31). The experimental results clearly show 
excellent agreement with the simple analysis. Similar success was obtained for test 
cases where il* 3 1. In this situation, the second term in (31) is dominant. Conven- 
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FIG. 5. Isolated spatial error using conventional flux calculation versus N for l-D, l-phase polar 
tests. 
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FIG. 6. Isolated spatial error using Galerkin flux calculation versus N for l-D, l-phase polar tests. 
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FIG. 7. Asymptotic relative error for various values of N for I-D, l-phase polar tests. The conven- 
tional flux error (...); the error estimate, Eq. (31) ([ 1); Galerkin flux error (-). 
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tional phase front errors were essentially independent of thermal properties as 
expected. 

A complementary set of two-phase, 1-D results were obtained in this geometry; 
they were consistent with all the above discussion and analysis. 

Finally, we have solved a set of l- and 2-phase polar problems on a 2-D grid of 
linear triangles as in [6]. With reasonable circumferential resolution these results 
converged to their 1-D counterparts, as expected, and conclusions with respect to 
the radial resolution are unchanged. In Fig. 8 we isolate the circumferential dis- 
cretization error for a typical run by subtracting off the error obtained in the 
limiting 1-D polar simulation. The results for both conventional and Galerkin 
phase boundary treatment are essentially the same. Evidently, the addition of a 
second dimension tangential to the phase boundary introduces comparable 
second-order errors regardless of boundary treatment. 
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FIG. 8. Circumferential discretization error for conventional and Galerkin flux calculations at the 
phase boundary. A8 = e/4. 
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FIG. 9. Computed and lab results for drum experiment [l 11. (a) Mesh after 20h, (b) temperature 
along axis of symmetry after 4.5 and 20h. Numerical results (-); data (0 ). 

COMPARISON WITH LAB DATA 

Recently, O’Neill [ 111 introduced a test case based on laboratory freezing of a 
saturated coarse sand confined in a cylindrical drum. Freezing was initiated by an 
eccentrically placed cold pipe; temperature was maintained above freezing on the 
drum circumference. In Fig 9 we show computed results versus the data, which Dr. 
G’Neill kindly provided. 

SUMMARY AND CONCLUSION 

It is shown that a perfect heat balance is maintained in multidimensional deform- 
ing element phase change simulation, provided one utilizes the complete set of 
Galerkin equations. At boundaries where temperature is specified, the associated 
Galerkin equation is “the equation for the heat flux.” 

It is, however, conventional practice to discard the Galerkin equations along type 
I boundaries. Use of this procedure on the phase boundary leads to a heat 
imbalance which arises in the differentiation of the numerical temperature solution 

581/51/2-11 
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and which may be quantified for simple problems. Both analysis and experiment 
indicate that this heat imbalance produces an error which is first-order in the mesh 
spacing normal to the boundary and which dominates the overall numerical error 
for realistic sets of parameters. Retention of the Galerkin equation on the phase 
boundary as the vehicle for calculating the boundary motion restores the second-or- 
der accuracy on linear elements. 

Operationally, this new procedure is easily implemented. Following assembly of 
the Galerkin set, we remove and save the equations at the phase boundary nodes, 
compute simultaneously the nodal temperature changes dTi/dr as usual, and then 
compute the latent heat balance via the saved equations and the new temperature 
information. Parallel conclusions have also been established [7, 121 for parabolic 
problems on fixed domains. 

Finally, we note that a similar set of conclusions have been reached by Bonnerot 
and Jamet [14], in the separate context of space-time finite elements. Their early 
[ 1,2] experiments utilized conventional treatment of the phase boundary flux on 
linear one- and two-dimensional elements, and showed first-order accuracy. In one 
dimension, second order was achieved by a quadratic reinterpolation of p at the 
phase boundary, but the approach is not readily applicable in higher dimensions. 
Subsequently, one-dimensional quadratic elements were adopted and conventional 
differentiation of $ gave second-order accuracy, while cubic reinterpolation gave 
third-order results. Bonnerot and Jamet [4] introduced a one-dimensional 
improvement which, like our own method, has the property C tii= 1 and which 
therefore conserves heat; third-order results were obtained on the one-dimensional 
quadratic elements without recourse to reinterpolation. Given the underlying 
similarity of their method to ours [6], the present results complement these 
findings. 

ACKNOWLEDGMENT 

This work has been supported by the U.S. Army Cold Regions Research and Engineering Laboratory 
under Contract DACA89-82-K-0004. 

REFERENCES 

1. R. BONNEROT AND P. JAMET, ht. J. Numer. Methods Eng. 8, (1974), 811. 
2. R. BONNEROT AND P. JAMET, J. Comput. Phys. 25 (1977), 163. 
3. R. BONNEROT AND P. JAMET, J. Comput. Phys. 32 (1979), 145. 
4. R. BONNEROT AND P. JAMET, J. Comput. Phys. 41 (1981), 357. 
5. H. S. CARSLAW AND J. C. JAEGER, “Conduction of Heat in Solids,” 2nd ed., pp. 295-296, Clarendon, 

Oxford, 1959. 
6. D. R. LYNCH, J. Comput. Phys. 47 (1982), 387. 
7. D. R. LYNCH, Advances in Wuter Resources 7. (1984), 67. 
8. D. R. LYNCH AND W. G. GRAY, J. Comput. Phys. 36 (1980), 135. 
9. D. R. LYNCH AND K. ONEILL, ht. J. Numer. Methods Eng. 17 (1981), 81. 



DEFORMING ELEMENT PHASE CHANGE SIMULATION 317 

10. K. O’NEILL AND D. R. LYNCH, Chap. 11, “Numerical Methods in Heat Transfer” (Lewis et al., 
Eds.), J. Wiley, New York, 1981. 

11. K. O’NEILL, Int. J. Numer. Methodr Eng. 19 (1983), 1825. 
12. P. M. GRESHO, R. L. LEE, R. L. SANI, in “Numerical Methods in Thermal Problems,” Vol. 2 

(R. W. Lewis, K. Morgan, B. Schrefler, Eds.), pp. 663475, Pineridge, Swansea, 1981. 

RECEIVED: August 16, 1983; REVISED March 30, 1984 
DANIEL R. LYNCH AND JOHN M. SULLIVAN, JR. 

Thayer School of Engineering, 
Dartmouth College, 

Hanover, New Hampshire 03755 


